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Abstract:  Accurate and efficient detection of target 

crops is paramount for the advancement of intelligent 

agriculture, enabling precision farming and resource 

optimization. While numerous studies have focused 

on improving detection algorithms, the challenge lies 

in implementing them on embedded devices due to 

escalating computing demands. This project 

addresses this challenge by introducing a lightweight 

parameter network tailored for crop detection. 

Leveraging grouped convolution and integrating 

convolutional layers with Batch Normalization, the 

proposed network achieves accelerated inference 

without compromising accuracy. Experimental 

validation on diverse datasets, including Strawberry 

Flower, Tomato, Wind Turbine, and PASCAL, 

demonstrates the efficacy of the network through 

comparative analysis with baseline models. In 

particular, experiments on remote aerial satellite 

images utilizing the Super YOLO model showcase 

significant performance gains. The Conv-BP-YOLOs 

model achieves a remarkable 98% mean Average 

Precision (mAP), while further enhancements are 

achieved through exploration of advanced techniques 

such as YOLO V5x6 and YOLOV8, surpassing 99% 

mAP. Additionally, model implementation on Colab 

utilizing Faster R-CNN, SSD, EfficientDet 

RetinaNet, and various YOLO versions underscores 

the versatility and applicability of the proposed 

approach. This research contributes to the 

development of efficient crop detection solutions 

crucial for the evolution of intelligent agriculture. 

Index Terms:  Lightweight, grouped convolution, 

real-time detection, embedded platforms. 

1. INTRODUCTION 

In today's technologically driven world, computer 

vision technology has become ubiquitous, permeating 

various facets of daily life. However, despite 

significant advancements, achieving human-like 
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speed and accuracy in decoding image information 

remains a formidable challenge [1]. At the forefront 

of computer vision tasks lies object detection, a 

critical and complex endeavor aimed at classifying 

and localizing objects within images or videos [2], 

[3]. The importance of fast and accurate object 

detection cannot be overstated, as it underpins 

numerous downstream applications, including the 

utilization of robots for tasks such as pollinating 

strawberry flowers [4], [5]. 

The rapid and precise detection of strawberry flowers 

is essential for tasks such as yield estimation and the 

development of pollination robots, highlighting the 

critical role of object detection in advancing 

agricultural practices [4], [5]. Over the years, the field 

of object detection has witnessed a remarkable 

evolution, transitioning from manual feature-based 

methods, such as the Viola-Jones Face Detector (VJ 

Det), to deep learning-based approaches like the You 

Only Look Once (YOLO) series [6]. Research 

institutions and universities continually strive to 

enhance detection algorithms, proposing new models 

with improved accuracy [6]. 

However, a significant hurdle in the widespread 

adoption of object detection algorithms lies in the 

substantial computing power demands they entail. 

Both traditional algorithms and deep learning-based 

approaches require dedicated large computing 

devices, posing challenges for deployment on 

resource-constrained platforms such as Unmanned 

Aerial Vehicles (UAVs) or mobile robots [7]. The 

computing capabilities of mobile devices are often 

insufficient to support high-precision detection 

algorithms, leading to compromises in performance 

and significantly reduced device lifetimes due to 

overload computing [7]. Thus, there is an urgent need 

for algorithms that not only deliver high accuracy but 

also exhibit low arithmetic power requirements, 

particularly tailored for deployment on mobile 

devices. 

While substantial progress has been made in 

addressing the computing power demands of object 

detection algorithms, significant challenges persist. 

Some works focus solely on improving detection 

accuracy without considering the algorithm's 

computing power requirements, rendering them 

unsuitable for deployment on embedded devices [8]. 

Additionally, overlooking the significant parameters 

of algorithms, which contribute to the high 

computing power demand, poses another challenge. 

Some approaches only address post-training methods 

like pruning or quantization to reduce weight, 

potentially compromising detection accuracy [8]. 

Despite these challenges, the field of object detection 

continues to advance, with researchers exploring 

innovative solutions to address the complex interplay 

between accuracy and computational efficiency. 

Traditional object detection methods, from VJ Det to 

the Deformable Parts Model (DPM), have witnessed 

notable improvements in detection speed and 
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accuracy [9]. The advent of Convolutional Neural 

Networks (CNNs) has further revolutionized object 

detection, with models like R-CNN and YOLO 

demonstrating substantial leaps in detection 

performance compared to traditional algorithms [9]. 

In summary, while significant progress has been 

made in object detection, challenges persist, 

particularly concerning the balance between accuracy 

and computing power demands. Addressing these 

challenges requires a concerted effort from the 

research community to develop algorithms that not 

only deliver superior accuracy but also exhibit 

efficiency in terms of computational requirements. 

By navigating these complexities, researchers aim to 

unlock the full potential of object detection 

technology, driving advancements across a myriad of 

domains. 

2. LITERATURE SURVEY 

Object detection, a crucial task in computer vision, 

remains challenging despite significant advancements 

[1]. Fast and accurate object detection is essential for 

various applications, such as robotics for strawberry 

flower pollination, where precise detection is crucial 

for yield estimation and robot development [4], [5]. 

From manual feature-based methods like VJ Det to 

deep learning-based approaches like the YOLO 

series, object detection has evolved rapidly [6]. 

However, both traditional and deep learning-based 

algorithms pose significant computing power 

demands, limiting their deployment on resource-

constrained platforms like UAVs or mobile robots 

[7]. 

While traditional methods like VJ Det and DPM have 

shown improvements in speed and accuracy [9], the 

advent of CNNs has revolutionized object detection 

[9]. Models like R-CNN and YOLO have 

significantly improved detection speed and accuracy 

compared to traditional algorithms [9]. Despite these 

advancements, challenges persist. Some works focus 

solely on improving detection accuracy, neglecting 

computing power requirements, hindering 

deployment on embedded devices [8]. Additionally, 

overlooking algorithm parameters contributes to high 

computing power demands. Some approaches address 

this post-training, risking decreased accuracy [8]. 

In agricultural contexts, deep learning-based object 

detection has shown promise. Dias, Tabb, and 

Medeiros successfully detected apple flowers using 

deep convolutional networks [19]. Their approach 

facilitates tasks like yield estimation and orchard 

management. Moreover, Zhang et al. developed a 

real-time strawberry detection system using deep 

neural networks on embedded systems, enabling 

high-performance detection in agricultural 

environments [25]. However, deploying deep 

learning models on mobile devices poses challenges 

due to computational constraints [27]. ShuffleNet 

addresses this challenge, offering an efficient CNN 

architecture tailored for mobile platforms [27]. 
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Similarly, Liu et al. proposed a lightweight neural 

network framework for human activity recognition on 

mobile devices, achieving high performance with 

minimal computational complexity [28]. 

In conclusion, object detection research spans diverse 

applications and methodologies. While advancements 

have been made in accuracy and efficiency, 

challenges remain in balancing computational 

demands and deployment on resource-constrained 

platforms. Addressing these challenges requires 

interdisciplinary efforts to develop efficient and 

accurate object detection solutions for real-world 

applications. 

3. METHODOLOGY 

a) Proposed Work: 

The proposed work introduces a novel YOLOv5-

Conv-BN system tailored for efficient and high-

performance strawberry flower detection. This 

system emphasizes lightweight parameter networks, 

leveraging convolutional and Batch Normalization 

layers to optimize computational efficiency. A key 

aspect of the proposed approach is its comparative 

analysis with other state-of-the-art models, including 

Faster R-CNN[33,34], YOLOv5x, SSD[35], and 

RetinaNet. This comparative analysis serves to 

evaluate the effectiveness and suitability of the 

YOLOv5-Conv-BN system in relation to existing 

methods. By assessing factors such as detection 

accuracy, speed, and computational efficiency, the 

proposed work aims to provide valuable insights into 

model selection for strawberry flower detection tasks. 

Overall, the YOLOv5-Conv-BN system represents a 

promising advancement in object detection 

methodologies, offering a balance between efficiency 

and performance for real-world applications in 

precision agriculture. 

b) System Architecture: 

 

Fig 1 Proposed Architecture 

The system architecture encompasses dataset input 

involving Strawberry Flowers, Wind Turbine, 

Tomato, and VOC2007, followed by image 

processing and augmentation. Model building 

integrates Faster R-CNN[33,34], SSD[35], 

EfficientDet RetinaNet, and various YOLO versions 

including YOLOv5X, YOLO-Conv-BN, YOLOv5x6, 

and YOLOv8. Performance evaluation metrics such 

as Recall, mAP, and Precision are utilized to assess 

model efficacy. Object detection is then conducted 

using the trained models, enabling accurate 

identification and localization of target objects. This 

comprehensive approach facilitates the selection of 
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the most suitable object detection algorithm for 

precision agriculture and related applications. 

c) Dataset: 

Strawberry Flowers:The dataset includes images 

capturing various aspects of strawberry plants, 

focusing on flowers for detection tasks. These images 

showcase the diverse appearance and arrangement of 

strawberry flowers, presenting challenges such as 

variations in size, color, and clustering. 

 

Fig 2 Flowers Dataset 

Wind Turbine:Images of wind turbines are included 

in the dataset, highlighting the detection of these 

structures in different environmental contexts. 

Variability in turbine size, orientation, and 

background scenery poses challenges for accurate 

detection algorithms. 

 

Fig 3 Wind Turbine Dataset 

Tomato:The dataset contains images of tomatoes, 

emphasizing detection tasks related to tomato plants 

and fruits. Variations in tomato ripeness, shape, and 

clustering patterns are observed, presenting 

challenges for object detection models. 

 

Fig 4 Tomato Dataset 

VOC2007:The VOC2007 dataset provides a 

comprehensive collection of images encompassing a 

wide range of object categories, including people, 

animals, vehicles, and household items. Exploration 

of this dataset allows for broader insights into object 

detection across diverse domains, facilitating 

comparative analysis with specialized datasets like 

Strawberry Flowers, Wind Turbine, and Tomato. 
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Reading the Image:The first step in dataset 

exploration involves programmatically reading the 

images from each category. This process enables 

access to pixel values, dimensions, and metadata, 

providing the foundation for further analysis and 

processing. 

Plotting the Image:After reading the images, the next 

step is to plot them for visual inspection and analysis. 

Visualization aids in understanding the characteristics 

of the dataset, including variations in object 

appearance, lighting conditions, and backgrounds. 

This step is crucial for gaining insights into the 

dataset's complexities and informing subsequent steps 

in model development and evaluation. 

d) Image Processing: 

Converting to Blob Object: Images are converted into 

blob objects, which are a format suitable for input 

into neural network models. This process involves 

resizing the images to a predefined size, converting 

them to the appropriate color space, and normalizing 

pixel values. 

Defining the Class: Classes are defined to represent 

the objects of interest in the dataset. Each class 

corresponds to a specific object category, such as 

"strawberry flower," "wind turbine," or "tomato." 

Declaring the Bounding Box:  Bounding boxes are 

declared to indicate the location and extent of objects 

within the images. Each bounding box is defined by 

its coordinates (x, y) and dimensions (width, height) 

relative to the image size. 

Convert the Array to a Numpy Array:  The image 

data is converted into a numpy array, a widely used 

data structure in Python for numerical computing. 

This allows for efficient manipulation and processing 

of image data within the Python environment. 

Loading the Pre-trained Model: 

Reading the Network Layers:  The pre-trained 

model's architecture is read, comprising a series of 

interconnected layers responsible for processing input 

images and producing output predictions. This step 

involves loading the model's configuration and 

weights. 

Extracting the Output Layers: Output layers are 

extracted from the pre-trained model, representing the 

final layers responsible for generating predictions. 

These layers typically produce output in the form of 

class probabilities and bounding box coordinates. 

Appending the Image - Annotation File and Images: 

The image data is combined with annotation files 

containing information about object classes and 

bounding box coordinates. This facilitates supervised 

learning, where the model learns to associate image 

features with corresponding object labels. 

Converting BGR to RGB:  If necessary, images are 

converted from the BGR (Blue-Green-Red) color 
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space to RGB (Red-Green-Blue). This ensures 

consistency in color representation across different 

platforms and libraries. 

Creating the Mask: Masks are created to highlight 

regions of interest within the images. These masks 

can be used for tasks such as segmentation, where the 

goal is to partition images into meaningful regions 

corresponding to different objects. 

Resizing the Image: Images are resized to a 

standardized size to ensure consistency in input 

dimensions across the dataset. This step is essential 

for compatibility with the pre-trained model and 

efficient processing during training and inference. 

Data Augmentation: 

Randomizing the Image: Images are randomly 

augmented to introduce variations in lighting, 

contrast, and other visual characteristics. This helps 

improve the model's robustness to different 

environmental conditions and enhances its 

generalization capabilities. 

Rotating the Image: Images are rotated by a certain 

angle to simulate variations in object orientation. This 

augmentation technique helps the model learn to 

recognize objects from different viewpoints and 

angles. 

Transforming the Image: Various transformations 

such as scaling, shearing, and flipping are applied to 

the images to further augment the dataset. These 

transformations introduce additional variations, 

making the model more robust and resilient to real-

world conditions. 

e) Algorithms: 

YOLOv5X: YOLOv5X is an extension of the YOLO 

(You Only Look Once) object detection architecture, 

known for its real-time performance and high 

accuracy. YOLOv5X utilizes a deep neural network 

with a large number of layers and parameters to 

detect objects in images efficiently. It adopts a single-

stage approach, where object detection and 

classification are performed simultaneously. 

YOLOv5X employs anchor boxes and feature 

pyramid networks to handle objects of varying sizes 

and scales effectively. 

YOLO - Conv-BN: YOLO - Conv-BN is a variant of 

the YOLO architecture that incorporates batch 

normalization (BN) layers after convolutional layers. 

Batch normalization helps stabilize and accelerate the 

training process by normalizing the input to each 

layer. This variant improves the convergence speed 

and generalization performance of the YOLO[36,37] 

model by reducing internal covariate shift during 

training. 

Faster R-CNN: Faster R-CNN is a two-stage object 

detection framework that consists of a region 

proposal network (RPN) followed by a region-based 

convolutional neural network (R-CNN). The RPN 
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generates candidate object bounding boxes, which are 

then refined and classified by the R-CNN. Faster R-

CNN[33,34] achieves high accuracy by leveraging a 

shared convolutional backbone for feature extraction 

and employing region-based strategies for object 

localization and classification. 

SSD (Single Shot MultiBox Detector): SSD is a 

single-stage object detection framework that directly 

predicts object bounding boxes and class probabilities 

from feature maps. SSD[35] achieves real-time 

performance by simultaneously predicting multiple 

bounding boxes of different aspect ratios and scales 

at each feature map location. This enables efficient 

detection of objects at various sizes and aspect ratios 

without the need for region proposal generation. 

RetinaNet: RetinaNet is a single-stage object 

detection architecture designed to address the 

imbalance between foreground and background 

classes in the training data. It introduces a novel focal 

loss function that focuses on hard examples during 

training, mitigating the problem of class imbalance. 

RetinaNet achieves high accuracy by effectively 

handling objects of varying sizes and complexities 

while maintaining real-time performance. 

4. EXPERIMENTAL RESULTS 

Precision: Precision evaluates the fraction of 

correctly classified instances or samples among the 

ones classified as positives. Thus, the formula to 

calculate the precision is given by: 

Precision = True positives/ (True positives + False 

positives) = TP/(TP + FP) 

 

Recall: Recall is a metric in machine learning that 

measures the ability of a model to identify all 

relevant instances of a particular class. It is the ratio 

of correctly predicted positive observations to the 

total actual positives, providing insights into a 

model's completeness in capturing instances of a 

given class. 

 

mAP: The mAP for object detection is the average of 

the AP calculated for all the classes. mAP@0.5 

means that it is the mAP calculated at IOU threshold 

0.5. The general definition for the Average 

Precision(AP) is finding the area under the precision-

recall curve.
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Fig 5 Comparison Graphs- Flowers Data 

 

Fig 5 Comparison Graphs- Tomato Data 

 

Fig 6 Comparison Graphs- Wind Turbines Data 

 

Fig 7 Comparison Graphs- Pascal Data 

 

Fig 8 Home Page 

 

Fig 9 Registration Page 

http://www.pragatipublication.com/


      International journal of basic and applied research 

 www.pragatipublication.com 

ISSN 2249-3352 (P) 2278-0505 (E)   

Cosmos Impact Factor-5.86 

 

 

 

 

       Index in Cosmos 

    May 2024, Volume 14, ISSUE 2 

        UGC Approved Journal 

 
 
 
 
  

 
 
 
 

Page | 620 
 

 
 
 

 

Fig 10 Login Page 

 

Fig 11 For Flowers 

 

Fig 12 Upload Input Image 

 

Fig 13 Predicted Results 

 

Fig 14 For Pascal 

 

Fig 15 Upload Input Image 
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Fig 16 Final Outcome 

 

Fig 17 For Tomato 

 

Fig 18 Upload Input Image 

 

Fig 19 Predicted Results 

 

Fig 20 For Wind 

 

Fig 21 Upload Input Image 
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Fig 22 Final Outcome 

5. CONCLUSION 

In summary, the exploration and assessment of 

various object detection algorithms, including Faster 

R-CNN[33,34], SSD[35], EfficientDet RetinaNet, 

and multiple versions of YOLO (You Only Look 

Once), have provided valuable insights into their 

performance across different computer vision 

applications, notably in precision agriculture. YOLO 

variants, particularly YOLOv5X[36] and YOLO with 

Conv-BN, demonstrated promising accuracy and 

efficiency, making them suitable for deployment on 

resource-constrained devices like mobile robots and 

UAVs. While Faster R-CNN, SSD, and EfficientDet 

RetinaNet offer higher precision, they often require 

more computational resources, limiting their 

practicality in real-world scenarios. Balancing 

accuracy, efficiency, and adaptability is crucial for 

deploying object detection algorithms effectively in 

industries such as precision agriculture, robotics, and 

UAV applications. Future research should focus on 

refining and optimizing these algorithms to address 

specific challenges, driving advancements in 

computer vision technology for practical applications. 

6. FUTURE SCOPE 

Looking ahead, future research could focus on 

several avenues to further enhance the capabilities 

and applications of the lightweight object detection 

model. Firstly, continued optimization and 

refinement of the network architecture could lead to 

even greater efficiency and accuracy, opening up 

possibilities for broader deployment across various 

industries and scenarios. Additionally, exploring 

advanced techniques such as transfer learning and 

ensemble methods could improve the model's 

generalization capabilities and robustness to diverse 

environmental conditions. 

Moreover, extending the application of the model to 

other agricultural crops and objects beyond 

strawberry flowers could broaden its impact and 

relevance. Collaborations with agricultural experts 

and industry stakeholders could facilitate the 

integration of the proposed technology into real-

world farming practices, driving innovation and 

efficiency in precision agriculture. Lastly, continued 

efforts in user interface development and integration 

with UAVs and mobile robots could enhance 

usability and accessibility, enabling seamless 

adoption and deployment in practical scenarios. 

Overall, the future holds promising opportunities for 

leveraging lightweight object detection models to 
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address critical challenges and drive advancements in 

various fields, from agriculture to robotics and 

beyond. 
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